Links

Properties of Limits

Common algebraic rules also apply to limits, namely the following.
  • If
    anaa_n\rightarrow a
    and
    bnbb_n\rightarrow b
    , then
    limnan+bn=a+b.\displaystyle\lim_{n\rightarrow\infty} a_n + b_n=a+b.
  • If
    anaa_n \rightarrow a
    ​ and
    bnb0b_n\rightarrow b\neq 0
    ​ and
    bn0b_n\neq 0
    ​ for all
    nn
    ​, then
    limnanbn=ab.\displaystyle\lim_{n\rightarrow\infty} \dfrac{a_n}{b_n}=\dfrac{a}{b}.
Squeeze Lemma If
anbncna_n\leq b_n\leq c_n
​, for all
nNn\in\mathbb{N}
, and both the sequences
{an}\{a_n\}
and
{cn}\{c_n\}
​ converge to a limit
LL
, then the sequence
{bn}\{b_n\}
converges to
LL
​ too.
Let
ε>0\varepsilon > 0
​ be given. It suffices to show there is
NNN\in\mathbb{N}
​ such that
bnLε,for all nN.|b_n - L| \leq \varepsilon,\quad \text{for all } n\geq N.
Since
{an}\{a_n\}
​ converges to
LL
​, there is
N1NN_1\in\mathbb{N}
such that
anLε,for all nN1.|a_n - L|\leq \varepsilon,\quad\text{for all } n\geq N_1.​
Similarly, there is
N2NN_2\in\mathbb{N}
such that
cnLε,for all nN2.|c_n - L|\leq \varepsilon,\quad\text{for all } n\geq N_2.​
These inequalities imply
εanLbnLcnLε,for all nmax(N1,N2).-\varepsilon \leq a_n - L \leq b_n- L​ \leq c_n - L \leq \varepsilon, \quad \text{for all } n\geq \max(N_1,N_2).
Thus, using the definition of absolute value, the above relation yields
bnLε,for all nmax(N1,N2).|b_n - L| \leq \varepsilon,\quad \text{for all } n\geq \max(N_1,N_2).
and the desired relation holds, taking
N=max(N1,N2).N=\max(N_1,N_2).
\blacksquare